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Let H, 11
+ 
be real Hu bert spaces with c H algebraically and topologically

and H
+ 
dense in H. Let H be the dual of H

+ 
via the inner product of H and

denote by L
S

(H
+,
H_) the space of symmetric bounded linear operators from H+ 

into

H .  We prove that the evolution of the electric displacement field in a simple

class of holohedral isotropic dl4lectrics can be modeled by an abstract initial—

value problem of the form

_ 
u — au — Lu + f ~ M(t—t)u(T)dt = 8(t)u , 0 ~ t � T_ .tt _ .t 0 —  — .~0

0) 
~~~ ~~

o) 
~i 

g H~)

where L € Ls(H+i H ) ,  11(t) € L2([O ,T); LsO3+~ 
H)), 8(t) € C

1([0,T)) , and ~ is

~ Li’..1 
an arbitrary (non—zero) real number. By employing a logarithmic convexity

argument we derive growth estimates for solutions of the above system which lie

in uniformly bounded classes of the form

N = {u e C
2([O ,T); ll~ ) sup � N)

[O ,T) +

for some N > 0; our results are derived under a variety of assumptions concernin~

c~, ~ (t ) , and the inital data (without making any definiteness assumptions
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on the operators L or M(t), 0 ~ t T) and are used to obtain growth estimates

for the elec tric displacement f ield D(x ,t) in rigid dielectrics which satisfy

constitutive relations of the form

D(x ,t) a E(x ,t) +

H(x ,t) b B(x ,t) + ~~t—T)B(x,T)dT

where E, H, B are the usual electromagnetic f ield variables , (x ,t) ~ x [0,T),

c R3 is bounded region with smooth boundary ~ 2, a and b are positive

constants , and 4 ,  ~(i are non—negative monotonically decreasing functions of t.
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1. Introduction

In recent work [1] — [4] this author has der ived stability and growth

estimates for specific classes of solutions to initial—value problems

associated with abstract integrodifferential equations of the form

— Nu + f ~ K(t—T)uCt)dT = 0, 0 � t < T, (1.1)

In this equation u e C2([0,T); H
+
) with € C

1([0,T); H
+

) ,  and

e C ([0,T) ; H ) ,  where H
+, 

H are Hilber t spaces which are def ined as

follows: Let H be any real Hu bert space with inner—product < ,> and let

H c H (algebraically and topologically) with H dense in H; denote the

inner—product on H+ 
by <,>

~~
. Then U is the completion of H under the

norm

I <v,w> I
l Iw l i  = sup (1.2)

vEH
+ 

. .+

If we let L(R+,H) 
denote the space of bounded linear operators from

into H_ then in (1.1) we only require that

(i) N € L(H
+
,H) is symmetric and

(ii) K(t), 
~~
(t) € L

2 ((~oo,oo); L (H~ ,H ) )

where denotes the strong operator derivative of K; no definiteness

assumptions are placed on N and thus the initial—value problem obtained

by appending to (1.1) the initial data

u(O) — f~ — g; f,g € H~ 
- (l.3a)

and the prescription of the past history which is ~iven~by~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~~~~~~~~
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u(t) — U(t), — < t < 0 (l.3b)

is, in general , non well—posed . If we restrict our attettion to classes

of bounded solutions to (1.1) — (1.3) of ‘he form

N — {v € C
2([O ,T); H+)I sup H v(t)H+ ~ N

2
)then it is possible to derive

[0,T)
both stability and growth estimates for solutions u c N under the assumption

that K(0) satisfies

— <v,K(0)v> � K~ Iv ’ 
~:, 

Vv € (l.4a)

where
K � ~ir sup Il K (t)II (1.4b)

[0,T) ~ L(n
+
,U )

with U) the embedding constant for the injection i: H -
~~ 
H+
.

The technique used in [1] — [3] is based on a logarithmic convexity

argument first employed by Knops and Payne [5] for the abstract wave

equation obtained from (1.1) by setting K(t) 0; a different logarithmic

convexity argument was employed by this author in [4J to derive continuous

data dependence theorems for the system (1.1), (l.3a), (l.3b). The results

obtained in [2] — [4] are applied in those papers to obtain growth, stability,

and continuous data dependence theorems for solutions to initial—value

problems associated with the equations of motion for linear isothermal

viscoelastic materials; the spaces H, H+, 
and B , as well as the operators

N and K( t) ,  are constructed and no definiteness assumptions are made on

the initial value of the relaxation tensor. In the case of a one—

dimensional homogeneous (isothermal) linear viscoelastic body, it is shown 11
in [3 that the conditions (l.4a), (l.4b) are equivalent to the requirement

that 

-

~~~ 

_ _ _ _ _ _  _ _ _ _ _ _ _ _

_

_ _ _ _  _ _ _ _  

j

_ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _  ~~~~



1 -
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~ —K with K > Urr4 sup I~ (t) l) (1.5)
[0, T)

where g(t) is the relaxation function of the material.

More recently we have turned our attention to the way in which integro—

differential equations arise in the theory of polarized non—conducting

material dielectrics, i.e., in [6] we have considered the following problem:

Let E , B, P, and D denote, respectively , the electric f ield vec tor , the

magnetic flux density, the polarization vector, and the electric displacement

in a non—conducting medium; the polarization and electric displacement

vectors are related via

D = c E + P , c E const. (1.6)
• — 0-. 0

I iIf (x ,t), I = 1,2,3, denotes a Lorentz reference frame , with the (x )

rectangular Cartesian coordinates and t the time parameter, then Maxwell ’s

equations have the local form

- _
~~~+cu r 1E = 0 , di v B — 0  (1.7)

curlH-~~~~~~0, divD O (l.~ )

whenever the density of free curren t — 0, the magnetization M — 0,

and the density of free charge 
~F 

— 0; in (1.7b), H represents the

magnetic intensity and is related to the magnetic flux den sity via

H — B where — c 2
, c being the speed of light in a vacuum . A

determinate system of equations for the fields appearing in Maxwell’s

equations is obtained by specifying a set of constitutive relations. For

example, in a vacuum P — 0 80

LL _
_
_ _ _ _ _ _ _ _  

•~~~~~~~~~~~~~~~~~ 
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• C E ~ H — B (1.9)

while in a rigid , linear , stationary nonconducting dielectric

D — c•E , B — (1.10)

where C and ii are constant second order tensors; the constitutive equations

(1.10) were given by Maxwell in 1873 [7]. In [6J we considered the set of

equations which define the dielectric as being a Maxwell—Hopkinson material ,

i.e., (1.10
2
) and

D(t) — cE(t) + f~~,q (t—T)E(T)dT (1.11)

where c > 0 and ~(t) is a continuous monotonicafly decreasing function for

t � 0; following a suggestion of Maxwell, Hopkinson [8] employed the

constitutive equations (l.lO
2
)
~ 
(1.11) in connnection with his studies

on the residual charge of the Leyden jar. It was demonstrated in E6J

that (1.11) in conjunction with the local Maxwell equations (1.7), (1.8),

yield certain integrodifferential equations for the evolution of the

electric f ield and the electric displacement f ield , respectively , in a

non—conducting material dielectric of Maxvell—Hopkinson type.

By introducing suitable Hilbert spaces H, 
~~~ 

H and operators

N c L(H
+,

U )  and R ( t) £ L
2((._cO,ac); L(H

+
,B_ )) we were able in [6] to

treat the initial—boundary value problem for D, as a special case of

the abstract initial—value problem (1.1), (1.2) (in [6] we assumed that

D(T) — 0, — ~~ < t < 0). From the stability and growth estimates derived

f or the electric displacement f ield D, corresponding estimates were then

der ived for the electric field E 
(1) by employing the relation

(1) For an excellent discussion of the qualitative behavior of electrot~agnetic
fields and Jielectric constants in dielectrics of Maxwell—Hopkinson type
(especially in the presence of an applied time periodic electric field) we refer

the reader to the monograph of H. Fröhlich , Theory of Dielectrics, Oxford U. Press

L (l949 .

- 
- 
::~~~~j~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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E( t) — c~~D(t )  + c’~~ f ~ ~‘(t—T)D(T)dT (1.12)

which is obtaining by inverting the Maxwell—Iiopkinson relation (1.11) via

the usual technique of successive approximation.

The constitutive relations associated with the Maxwell—Hopkinson

theory , i.e., (1.102) and (1.11), embody three basic simplifying assumptions:

they are linear , they effect an a priori separation of electric and magnetic

effec ts, and they do not allow for magnetic memory effects. As early as

1912 Volterra [9] proposed extending the Maxwell—Hopkinson theory to treat

the case where the dielectric is anisotropic, non—linear , and magnetized ;

his constitutive relations were of the form

D(x ,t) = c•E(x,t) + V (E(x ,T))) (l.13a)

t
• B(x,t) = li’H(x,t) + B (H(x,T) (l.13b)

-~~~

and it can be shown tha t (1.13a) reduces to (1.11) if the functional

V is linear and isotropic and the body satisfies various restrictions

which follow from considerations of material symmetry. Of course, (l.l3a),

(l.l3b) still effect an a priori separation of electric and magnetic

effects and, as pointed out by Toupin and R.Ivlin [10], such a separation

is inadequate with respect to predicting such a phenomena as the Faraday

effect in dielectrics. In [10] Toupin and RivlIn postulated constitutive

equations of the form

D( t) — ~ ~~ • E~~~(t) + ~ ~~ B~
’
~~(t) (l.l4a)

- v—0~~ 
- v—O

_ -

+ f ~ ~1
(t,t)~~~(t)d T + f ~ 4~~(t ,T) .

__________________

- 
. ______________________________
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H(t) — 
~ 

E~
’
~~(t) + ~ 

b,~, 
• B~

”
~(t) (1.14b)

- 
v—0 v=0

+ f
t 1p

1
(t,T) • B ( r ) d t  + f ~ ~p~~(t ,i) 

.

where E~
’
~~(t) = d

\)
E(t)/dt

V and 
~~~~~~~~~~~~~~~~ ~ 

are constant tensors; the kernels

!l’” ~2 
are taken to be continuous tensor functions of t and t which

satisfy growth conditions of the form

< c/(t—T)~~~~, p > 0

Toupin and Rivlin [10] also assumed that the dielectric does not exhibit

aging and as a consequence it follows that D(t) and H(t) are periodic

functions whenever E(t) and B(t) are; this latter result, when combined

with the hypothesized growth estimates on the kernel functions, and early

results of Volterra on the theory of functionals [9], yields the conclusion

• that .., ~~ depend on t and t only through the difference t—T (the

converse of this result is also true). Toupin and Rivlin [10] then prove

• that if the dielectric exhibits holohedral isotropy , i.e., if it admits

as its group of material symmetry transformations the full orthogonal group,

then E(t) may be eliminated from (l.14b) and B(t) may be eliminated from

(l.l4a); for a holohedral isotropic dielectric the constitutive equations

(1.14a), (1.l4b) reduce to

D(t) = ~ a E~~~(t) + f
t
4~(t T)E(T)dT (1.l5a)

- v=~0 
-

11(t) = ~ b~,B~
”
~~(t) + f~~ p (t—T)B(T)dT (l.l5b)

- \)0 -

where ~ = c~~, ~ 
= and where (due to the assumption of holohederal

isotropy) ~~ ?~ ~l 
and 

~l 
are all proportional to the identity tensor

• — -~~~- ~~
_ _  -.--v----- —

a. 
_ _ _ _ _  -
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and thus appear as scalars in (l.15a), (l.15b) .

In this paper we examine the special case of (l.l5a), (1.15b) which

corresponds to the assumptions a
~ 

= 0, b = 0, v � 1 and E(t) — 0,

B(t) = 0, — ~ T < 0, i.e.

D(t) a E(t) + f ~ q(t—t)E(T)dT (1.l6a)

11(t) = b B(t) + f ~ ~(t-T)B(T)dT (l.l6b)

This special case of a holohedral isotropic non—conducting material

dielectric still embodies a separation of electric and magnetic effects

in the constitutive theory but generalizes the Maxwell—Hopkinson theory

in that magnetic memory effects are taken into account through the presence

of the kernel function ~~t). In the nex t section we will formulate an

initial—boundary value problem for the electric displacement field D(t)

in a holohedral isotropic dielectric; provided ~~0) ~ 0, 
D(t) will be

shown to satisfy a (non—homogeneous) integrodifferential equation. By

introducing suitable Hu bert spaces and operators, the initial—boundary

value problem for D(t) is easily demonstrated to be equivalent to an

initial value problem for an abstract integrodifferential equation and

growth estimates f or specific classes of solutions to this abstract

problem are then obtained by employing a suitable logarithmic convexity

argument.

2. Initial—Boundary Value Problems for Holohedral Isotropic Dielectrics

Let (x1,t) be a fixed Lorentz reference frame; the local forms of

Maxwell’s equations are then given by (1.7), (1.8). Let ~? c be a

~ -~~~-—~~~~~~~ - - ——~~ ~~~~~~~~~~~~~~~ —.~~~~~ -- ~~~~~~~~~~~~~~ —~— - . -- ---~—-‘--.• ~~~~~~~~~~~~~~~~~~ ~~~~~~~~ I~~~1~ — 
- - -
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bounded region with boundary ~ 2 and assume that ~ 2 is suffiriently smooth

so that the divergence theorem may be applied . Finally, assume that c~ is

filled with a holohedral isotropic non—conducting dielectric material

which is non—deformable and which satisfies the hypotheses of §1 so that,

in [2,the electromagnetic field satisfies consitutive relations of the

t form (l.16a), (l.l6b ) where we assume that a > 0, b > 0 and flt), ~l-’(t)

are monotonically decreasing functions which are (at least) twice continuously

differentiable on [0,~ ) with 1p
13)

(t) a bounded integrable function on

[O ,co). The basic result of this section is

Theorem 11.1 The evolution of the electric displacement field D(x,t) in

any holohedral isotropic non—conducting material dielectric (which con-

forms to the constitutive hypotheses (l.l6a), (1.161,)) is governed by

the system of equations

+ ~(0) 
~ - b ~(0)[c 6. .6. 

k 
- D ] (2.1)

3t o o i~ J~1~ aX~~3X~~ i

+ 1, f~~P(t_ T)D 1(T) 
— 

~O
(t_r)6 ikô

j~ ax ?x )dT = b
0 ‘~
(t)D

1
(0)

where c l/a ’~’(0), ~~ (t) 
= 
~~t)/a and

= ~ (—l)’~~
’(t)

n l

= f ~ t—r)4~~~(T)dT , n � 2 
(2.2)

= a~~ 4(t)

- -~~ -~~~~~~~~~~~ - ~~~~~~ --~~~~~—~~~~~~~--

hIIfr ~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~
- -

~ — - ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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~~~~~~~~
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with an analogous defintion for ~f’(t) in terms of ~~t).

Proof By using succc :sive approximations we may invert the constitutive

relations (l.16a) and (l.l6b ) to obtain, respectively ,

E(t) = —i- D(t) + ~(t-T)D(T)dT (2.3a)

B(t) = 11(t) + -j- f ~ ‘1~(t—t)Her)dt (2.3b)

with c~(t) and ‘Y(t) defined in terms of ~ (t) and ~p ( t ) ,  respectively ,  as

indicated in (2.2). From (2.3a) and the second Maxwell relation in (1.8)

dlv E(t) = 0  so

~E(t) = — curl curl E(t) (2.4)

From (2.3b), however, and the first Maxwell relation in (1.7)

curl E(t) = — = — — ‘F(0)H(t) — f 0~ 
~t

(t_ T)
~~
(T)dT (2.5)

Therefore,

— curl curl E(t) = ~~~
— (curl 

~~~ 
+ ~~~~

— 

~1’(0)(curi H(t))

+ f ~ —
~~~~~~~~~

‘
~~~~

- H(t)dt = 
~~~

— D~~ + ~~~~

- 

~
Y(0)D

~0 0

+ f ~ ~t(t T)~ r(T)dT

where the second relation in (2.6) follows from the first Maxwell equation

in (1.7). Combining (2.6
2) with (2.4) and employing (2.3a) we obtain

• - -,-,—-- ~~
- ---.,~~

-- - -- .

II_ -~ ~~~~~~~~~~~~~~~~~~~ _ , _ ~~~z~~~ -
~~~— 

~~~~~~~~~~~~~~~~ ~~~~~~ ~~~-~~~~~i-~ ——~~~~~ .— ~~~~
—

~
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+ 
~
(O)D

t 
+ b f ~ ~t(t_ T)DT(T)dT = —~~D(t) + 

—

~~ 
f ~ ~(t-T)~ D(T)dT (2.7)

However,

f ~ ~ (t—T)D1
(T)d-t = ‘~(0)D(t) 

— 4’(t)D(O) + f ~ ~TT(t_T)D(T)dT (2.8)

Substituting (2.8) into (2.7) we have on >

+ ~~~~~~~~~~~~~~~~~~~~ b~~(0)(I — c ~)D(t) (2.9)

+ b0 J~
CY
~~

(t_T)I — (t—T)L~)D(T)dT = b ‘Y(t)D(0).

where c = 1/a ‘i’(O) and ~~(t) 
= ~‘(t)/a . Q. E. D.

In conjunction with he integrodifferential equation (2.9) we consider

initial and boundary data of the form

D(x, 0) = 
~~~~~~~~~ 

~~~~~~~~~~~ 
= D~ (x), x c (2.lOa)

D(x,t) 0, (x,t) E x E0,~
) (2.lOb )

where 
~~~~~~

‘ 
~~ 

are continuous on ~2. At this point it is convenient to

recast the initial—boundary value problem (2.9), (2.l0a), (2.lOb) as an

initial—value problem for an integrodifferential equation in Hu bert

space.(t~As in [6] we let C(~2) denote the set of three dimensional vector

fields with compact support in ~ whose components are in C (c.). We take

H = L
2
(c1), i.e. the completion of C~ U2) under the norm induced by the

inner product

<
~ ‘~

>
L2 

f ~ viw .dx (2.11)

while the Hilbert space 11
+ 

is taken to be }1
1
(c2) the completion of

(
~~ We specify, below , three spaces H, H-F, and H.- which are taken to

”certain
Sobolev spaces in the application and which satisfy certain mild require-
ments in the general development.

~ 

- -

- p._ _ _~~~~~~~~~~~~~~~~ ._ -~ I ~~~~~~~~~~~~~~~ _t~~~
._ L_
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under the norm induced by the inner product j
~v ~v .

1 
f ~ ~~~ ~~~~~~~~ dx (2.12)

11

Finally , 11 = li 1
(~2), the Hilbert space obtained by completing C (c2)

under the norm

aw . aw
1 lv i F —l sup [If ~v1w .dx I/ (f ~ ~~~~~~~~ .~~~~dx)

uJ (2.13)
H 

WEE ~
— 0

it is known that 111(~2) c L
2
(~) (both topologically and algebraically) and

that H~ is dense in L2
. We denote by ~ the embedding constant for the

inclusion map i: H
1
(~2) -~- L2

(c2).

Operators L E L(11
1
, il

l) and M(t) c L
2
((—~ ,°°) ; L (H1,H~~)) are now

defined as follows :

2

(Lv). b
~~

(0)Ec 6lk6.
~ ~~~~ 

— ~~~~~~ V € H~(c~) (2.14a)

a v k ~~~~ 

E

(M(t)v)
1 

E b [~~(t)6 1.v . — 

~ 
(t)61k6j1 a a ~~ € 

(2.l4b)

where the derivative are taken in the distribution sense. It follows

directly from these definitions and the smoothness assumptions on 4(t)

and x(t) that

(I) L € Ls (M’, H~~~) ,  M( t )  € L~(111, H~~ ) ,  t € ~~~~

(ii) M
~
(.) € L

2((._co,co); L(H
1
, 11~~))

-

• - 

- - - --

- - -• ~~~~~~~~~~~~~~~~~~~ _ -I _ __ -• - - ~~~~~ 
-, - - -
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where L5(H~, H~~) denotes the space of all symmetric bounded linear

operators from H1 into E l and M
t 
is the strong operator derivative of

M( ). Thus the system (2.1), (2.l0a), (2.lOb) is equivalent to

+ - LD + f ~ M(t-T)D(T)dT = b~~~(t ) D  (2.15)

= 

~o’ ~t
”
~ 

= 

~l 
(2.16)

where 
~~ ~l 

€ 11
1 and D € C2([0,cv); 111). Actually , we shall be interested

in solutions of (2.15), (2.16) on finite time intervals of the form [0,T)

where T, 0 < T < ~~~, is an arbitrary real number; this suggests that we

examine the following abstract initial—value problem: Let H, 11
+ 
be Hilbert

spaces with inner products < ,> and <
~
>+~ 

respectively , and assume that

11+ 
c H (algebraically and topologically) with 11

+ 
dense in H; define

as in (1.2). We consider solutions u € C
2
([0,T); 11

+
) of the system

~~~ 
— czu

~ 
— Lu + f ~ M(t—T)u(T)dT ~(t)u , 0 � t < T (2.17)

u(0) = u , u
~

(O) = u
1 
(u , u

1 
€ H) (2.18)

where ~ ~ 0 is an arbitrary real constant, B(t) is any real—valued func-

tion such that ~(t) exists a.e. on [O,T), L € L
5

(H
+,
H ) and

M(.), M
~
(.) € L

2([O ,T); L5(H+,H_ )). We assume that u~ € C
1([0,T); H

+
)

and ~~~ € C([0,T); H).

In §3 we derive some growth estimates for solutionr. u(t) of the

system (2.17), (2.18), which lie in the set N. Our estimates will be

obtained under various combinations of the following hypotheses :

L _ _ _ _ _ _ _  _ _ _ _ _
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• 0 ( a  o )  (—0 , 0~~~t < T
)~~, u ( ~~and~~(t) (o J  ° (~ 9 )  L~~ 0

, o n [ 0,T)

In §4 we apply our results to the system consisting of (2.1), (2.10a),

and (2.lOb) ; at no point in this work do we make any definiteness assumptions

on the operators L or N(t), t € [0,T).

3. Some Growth Estimates

Let K(t) — ½I1u~ I ! 2 
denote the kinetic energy associated with solutions

u of the system (2.17), (2.18) and P(t) = —½<u,Nu> the potential energy ;
then E(t) E K(t) + P(t) is the total energy. Let y’ and t

o 
be arbitrary

non—negative real numbers and define

F(t;y,t) E ) iu(t) 11 2 + y(t+t )2, 0 � t < T (3.1)

The growth estimates in this section all follow from the following

basic

Lemma Let u € N be any solution of (2.17), (2.18). Suppose that

—<v, M(O)v> � K II V I I ~~, ~~v e H~ (3.2a)

with

K � ~T sup MM 1 1 L(H H ) (3.2b)
[O ,T) ~~~~ -F ’ —

Tben there exists ~i > 0 such that for all t, 0 ~ t < T

Fr” — F’ 2 ~ —2F(2E(0) + p) + ciFF’ — 2czF(y (t+t ) + 4f~ K(t)dt) (3.3)

+ 2F(2f~ ~(T)<u,u >dt — B(t)<u,u > )  + 4F5 (O)iI u I T 2

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —--~-~~~~~--- —.~ —-~~~~ ‘—~~~~~~
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Proof From the definition of F(t;y,t), i.e. (3.1), we compute

F’(t;y,t )  — 2<u,u
~
> + y(t+t ) (3.4)

F”(t;y,t) 2IIu~ i l ~ + 2~<u,u~> + 2<u,Lu> (3.5)

— 2<u, f ~ M (t—T)u(T)dT+ 28(t)<u,u > + 2y,

where we have made use of (2.17) in (3.5) . Using the definitions of K(t),

E(t ) , we may rewrite (3.5) in the form

F”(t;y,t) = 2c1<u
~
u
~
> + 2B(t)<u,u >  — 2<u , f~ M(t—T)u(T)dT (3.6)

• + 4(2K(t) + y) — 2(2E(0) + y) — 4(E(t) — E(O))

However , for any l, 0 � r � t < T

E’(T) <
~ r’~~rt

> — 

~~~~~ 
— cdJ u1 I l 2 + ~(~r)<u ,u >  (3.7)

— 

~ T ’ ~~

Therefore,

2ctK(t) + ~(r) <u , u >  — 
~~~

— <u(r), f ~ M(T—a)u(c7)da> (3.8)

+ <u(r), f ~ N (T—~ )u(~)da> + <u(t), M(0)u(i)>

Integrating this last result from zero to t and substituting for

E(t) — E(0) in (3.6) we obtain

F”(t;y,t) = 2cx<u,u
~
> + 26(t)<u,u > + 2<u, f ~ N(t—r)u(t)dr> 

(3.9)

+ 4 ( 2 K ( t)  + y) — 2(2E(0) + y) — 8ct f ~ K (T)d-r — 4f~ B(i)<u ,u >di

— 4f~ <u ( r ) ,  f ~ ~ 1
(T~~~~~~~~~~~~>dT — 4f~ <u(t ) , M ( O ) u ( T ) > d T

I _ _ _ _ _ _ _ _ _  _ _ _ _  _ _ _  - _ _ _
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Therefore,

K(i)dt) (3.10)

+ 2F(8(t)(u,u > — 2f~ ~(r)<u1,u >dT) + 2F<u ,f~ M (t—T)u(T)dT>

+ 4Ff~ <u(r), f ~ MT(T—o)u(c)do>dT — 4FJ~ <u(T), M (0)u(T)>dT

However , from (3.1), (3.4), the definition of K(t), and the Schwarz

inequality it follows that -•

G( t ;y,t )  4F(t;y,t )(2K(t) + y) — F’2(t;y, t ) � 0 (3.11)

and, therefore, (3.10) yields the inequality

— ~,2 — 2F(2E(0) + y) + cxF(~~ l l u l l 2 
— 8f~ K(T)dT) (3.12)

+ 2F(2f~ ~(t)<u ,u >dt — 8(t)<u,u >) + 4F8(0)Iju 11
2 + 2F<u,f~~1(t—t)u(t)dt>

— 4Ff~ <u(r), f ~ M1(t—a)u(a)da>dr — 4Ff~ <u(r), M(0)u (T)>dT

If we make note of the fact that

h u h
2 — F’(t;y,t )  — 2y(t+t )

then we can rewrite (3.12) in the form

FT” — F’2 � — 2F(2E(0) + y) + ctFF’ — 2ctF(y(t+t ) + 4f~ K(T)dT) (3.13)

+ 2F(2f~ ~(r)<u ,u >d r — B(t)<u,u >) + 4F8 (0)lluhI+2F<u ,f~M (t—t)u(T)dT>

— 4Ff~ <u(t), f ~ M1(T—o)u(o)da>dT — 4F f ~ <u(T), M(0)u(r)>dT

In order to compl ete the proof of the lemma we now use the hypotheses

L~~ -~-~~ ~ - ~~~~~~~~~~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



(3.2a), (3.2b) and the fact that u £ N to bound , f r om below , the sum of the

last three terms in (3.13), i.e.

<u, f ~ M (t—T)uCr)dT I � hIu (t)Hf~ l LM (t_T)u (T)Ildr (3.14a)

w 1I~ (t)li~ f~
(II
~
(t_T) 1 !L(H ,H ) ) l h u (T)II~ dT

~ wT( sup I l u h h ) 2 sup I IM (t)hl L 11 11 ~ wN2T sup H M ( t ) h l L H B[O ,T) - [O ,T) - 
+
, 

—
, [O ,T) - +‘ )

and thus, as F(t;y,t )  � 0, 0 � t < T,

2F<u , f ~ N (t—r
)~(T)dr> � 

— 2L
~
N
2
Tsup h ?

~
f(t)II L ( H H )

F( t ;Y
~
t
O
) (3.14b)

Also,

- 4Ff~4Zu(T), M(O)u(T)>dT � 4KFf~~hjU( t )hI~ dt (3.15)

� 4wT sup MM H L (H H ~FJ~~
hju(T )hI~ dT

[0,T) —t ‘. +‘ —
,

by virtue of (3.2a) and (3.2b). Finally

f ~ <u(r), f ~ M.~(T~G)u(a)da>dT f~~I< u(T), f ~ MT(T.-a)u(a)d~>$dT (3.16a )

� ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

� 

[O T) t L
~~+

,H
~~

0
~~
. ÷ f0 +

� l
~ t l l L(R ,H)(fo I l~~( r ) l  l~ di)2

� 
[ T) ~ 11 ,1 1 ) 0  dT 

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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from which we easily deduce tha t

• 

— 4l~f~<u(T), J~ M1Cr—C)u(a)d~>dT (3.16b)

— 4~T sup h I M  1 1 L H  H ~Ff~ h I u(T)hI~ dT
[0,T) —t ‘ +‘ — ‘ 

—

Combining (3.13) with the estimates (3.14b), (3.15 2) and (3.l6b) we

obtain the estimate (3.3) with

p E y + wN2T I IM(t )II L(H H (Q.E.D.) (3.17)
[o , r) — 

+‘

With the preceding Lemma as a starting point we now begin our study

of the growth behavior of solutions to (2.17), (2.18) which lie in the

class N ; in each of the cases examined below we assume that M(0) satisfies

(3.2a) for some ~ > 0 whIch satisfies (3.2b).

Case I: u 0 and~~~< 0—o

In this case E(0) — ½ 1l u 1 11 2 and the second expression on the right—

hand side of (3.3) is non—negative; thus

FF” - F’ 2 � - 2F (11u
111 2 + ii) - la!FF’ (3.18)

f or all t, 0 � t < T, where p is given by (3.17). However, for Y~ to
arbitrary nonnegative real numbers,

Ayt~ � A hI u( t) 11
2 + Ay( t+t )2 E XF(t;y;t ) (3.19)

for any A � 0. If, in particular, we choose

A — A(y; t ) 2(Hu 1 11 2 + p)/yt2 (3.20)

then for all t, 0 � t < T, and all y, t
o 

� 0

~~~~~~~~~~~~~ 
---
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2(11 u
1 11 2 + ii) � A (y;t )F(t;y,t ) (3.21)

— 0 0

and (3.18) may be replaced by the estimate

FT” - F’~ � — A (y;t )F2 - Icd FF ’ (3.22)

The differential inequatlIty (3.22) now forms the basis for the following

growth estimate:

Theorem 111.1 Let u £ N be any solution of (2.17), (2.18) with u = 0
and ~ 

( 0. Assume that M(0) satisfies (3.2a), (3.2b) and that T >  l/(aI.

Then there exists a constant M > 0 such that

lIu (t )11 2 � M’6e~~~~ , 0 ~ t < T (3.23)

where ~ is given by (3.27).

Proof From (3.22) and Jensen’s inequality we obtain the estimate,

F( t;y,t )  � e~~~ [F( t
1

;y, t)e~~
1 1]6[F(t •y t )~~~~

1 2~ (3.24)

(valid for 0 � t
1 

< t � t
2 

< T) where

ó( t) — (e~~~~t — e t2) / (~ •~~~It l — e~~~~t2) (3.25)

The Interval [t1, t2] c [0,T) is any closed interval such that F(t;y,t )  > 0,

~ t � t
2
. However, It is a simple consequence of (3.24) and the

defintion of F(t;y,t )  that F(t;y,t )  0 on [0,T) if F( t;y,t) — 0 for
any £ [O T). Thus, without loss of generality , we may assume that

F(t;y ,t ) > 0, 0 ~ t < T. Taking t
1 — 0, t2 — T In (3.14) we obtain

—A —

2 ~
F(t;y,t )  � e a [yt

0J tF(T;y,t)e 
ci 

(3.26)

_ _ _ _ _ _  
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where

~(t) — (e~~~~t — e~~~~
T)/ ( l  — e~~~~T) (3.27)

We now choose y — l/ t2 and then take the limit in (3.26) as t -
~~

Clearly , as

F(t;yl/t
2
, t) = hIu(t) H

2 
+ (—

~
. - +  1) 2

lim F(t;1/t2,t ) h t u(t) 11 2 + 1 (3.28)
t -.+~ 

0 0 —

0

for all t € [0,T). Also , as U € N

u r n  F(T;l/t
2
,t) = u r n  (IIu (T)h1 2 

+ (~I~ + 1) 2)) � + 1 (3.29)
t - ~-fc~ t 9 .fc~ 

- t
oo 0

lim A(1/t2;t ) = lim 2 (hIu h 1 2+l/t2 + ji) 2(h1 u 111 2+j)E A (3.30)
° ° t -.+

~~ 
0 -

o 0

where p = wN2T sup I IM(t)l 1 L’H H ~ Thus, with y = l/t2 and t -‘- -f~
[0,T) — ‘ +‘ —

, °
in (3.26), we obtain the estimate

x x
hl u (t)11 2 � e~~~ [(w 2

N
2 + l) e~~~~~J , 0 � t < T, (3.31)

and the result, which shows that I h u h is bounded above by an exponentially

decreasing function of t for all t e [0,T) ,  f ollows by choosing N > 0 so

large that w
2
N
2 + 1 < M e x p ( — A / I c t l ) .

In contrast to the result contained in the statement of Theorem 111.1,

we have following theorem concerning lower bounds for solutions u £ N of

(2.17), (2.18).

- -  —
..—————-.—.-——— —- — -  - - --5—-—--  —5,-——-—- — - --5— -—--I. ~~~~~~~~~~~~~~~~~~~~~~ 
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Theorem 111.2 Let u € N be any solution of (2.17), (2.18) with =

and a < 0 and assume that M(0) satisfies (3.2a), (3.2b). If Ici l < 1 then

there exists T > 0 such that h u l l 2 
is bounded below by a monotonically

increasing exponential function of t, 0 � t < T.

Proof We bein by integrating the differential inequality (3.22) according

to the “tangent property” of convex functions—assuming that F(t;y,t )  > 0,

0 ~ t < T, where T > 0 is an arbitrary real number ; by the “tangent

proper ty” for convex functions we refer to the fact that the graph of a
C)convex function - on [O ,T) lies above the tangent line to the curve at

any point ~ € [0,T). Thus, we obtain directly from (3.22) the estimate

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1(~~ e 1 c u t )_ ~~~~ tJ (3.32)

However , F(O;y,t )  — yt2 and F’(O;y,t ) = 2yt .  Therefore, if we set

y = l/ t~ in (3.40) we obtain

Hu(t )1h
2 
+ [t/t + ij

2 
� exp~~~t;t )], 0<  t < T (3.33)

where
A(l/t

2
;t )

x(t ; t 0) E -j-
~
-
~
- [(.

~~— +  I~~I 
° )(l_e

_
~~~

t
) — X (1/t~ ;t0

)-t] (3.34)

and

)~(l/ t
2
;t ) = 2( hh u 1 h J 2 + -4 + ~

2
N
2T sup JJ M J J L (H H ) ) (3.35)

0 0 — t [0,T) —

0

(2) The inequality (3.22) and the assumption that F(t;y,t )  > 0 on C0,T)

imply that £n(F(a;y,t )e~~
#/ci ) is a convex function of a — e~~ dt on

[O ,T).

-— 

- , 
~~~~~~~~~~~~~~~~~~~ -~~ 
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We note, in passing, that x(0;t
0
) = 0. For the sake of convenience we

now set

A (l/t2;t
€ (t )=~~— +  ha7 

°

Then

x’(t;t0) € (t )e~~~~
t 

— A (1/t
2
;t ) (3.36)

From (3.36) it follows immediately that x ’(t;t0) 
> 0

for 0 < t < j c(t~) } provIded e(t ) > A (l/t2;t ). We now
ci 

x(l/t;t ) ° ° °

take the limit in (3.33) as t
o ~~ #~° and obtain

hI u (t )hh 2 
+ 1 � exp[ lim x (t;t )],  0 � t < T (3.37)

- t -~-f~
But

ur n  x(t;t0) = -j-
~
-
~
- [ lizn £ (t0)(l_e

5 I
~~

t) (3.38)
t-4~0

— lim A (l/t
2
;t)J

- 
2 

(l_ e
_
~~~

t
) - ~t ~(t)• h al

where A is given by (3.30). Also

d -l alt
lim x’(t;t0

) — ~~~ ~(t) — X(
e 

1 — 1) (3.39)
t -4~ 

I a ,
0

and , theref ore ,

> 0, 0 � t < T i 5 c ~ T~T) (3.40)

if Iah < 1. The statement of the theorem now follows with T = —i-— £n(—~---), i.e.,h al hal

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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lh u( t ) 11 2 + 1 � exp(~ ( t) ) ,  0 � t < -
~~

-j - £n(-i-
~
-) (3.41)

where X(t), as determined by (3.38), is nonnegative and monotonically

increasing on tO , -j -1~n (-j-~-j-)). Q.E.D.

Case ll: u O a n d a > 0

In thls case the expression H(t;y;t ) — 2ciF(y(t+t)+4f~~ (t)dt

can not be dropped from the differential inequality (3.3). As t < T and

ci > 0, (3.3) wIth = 0 implies that

FF” - F’2 � - 2F(hIu 1 h ! 2 + p ) + aFF’ — 2cxF(y(T+t)+2f
t h ju T h I 2

dT) (3.42)

In order to proceed further we shall need the following

Lemma Let u c N be any solution of (2.17), (2.18) with .‘ = 0. Then there

exists a real—valued continuous function h (t), defined for 0 � t <

S 
such that

~~ $~ I IUT I h 2dt ~ I lu u h 1
2 + h

~
(T) , 0 � t < T (3 . 4 3)

Proof: From the identity

~t 
= ‘0 ~TT 

dT +

and (2.17), we obtain

= + ciu + f~ Lu(T)dT 
— f ~f ~ MCr—a)u(a)dadt (3.44)

Thus,

L~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



r — —— 
— 

—- — 
—

1 ’ -

~~~~~~~~~~~~~~

� ll u ~ I ) + ci l )u(t) ll + .1~ l l
~

l l L(H H )l l
~

(T)ll +dT (3.45)

+ J ~ f ~i IN(t-a) I 1 L ( H H )  I l u ( c ~) I l~ dadT

I lu h i + awl )u(t) + t~ I L l SUp I Iu(T) -
-l - + — 

~~~ 
)r
O T 

- +

2 L(H H )suP H~~(T)lI~

~ Il u ~ I l  + p (t) sup ! l u ( ’ r ) I l
- ~~ [O ,T) - +

where

2
p (t) E aw ÷ t l I L J h L f .

~ 
+ - ~~~ sup J J M ( t ) I J L /  (3.46)

a - 
~
H
÷
,H )  ‘

~ [O ,T) - ¼ R+,
H J

Clearly p
~
(t) < p

~
(T) , for all t € E0,T) and, as u c N

H~ 1h I  � l I u
~ l i  + Np~ (T). 0 � t < T (3.47)

Therefore,

f~
h l u
~ h l 2dT � 2t (hl u 1 l l ~ + N2p~ (T)) ,  0 � t < T (3.48)

and the lemma follows with

h
~

(t) = N2p~ (t) (3.49)

If we combine (3.42) with (3.43) we obtain

FF” — F’
2 � - 2F(I ~ 

2 
+ 

~~ 
+ aFF’ (3.50)

where p > 0 Is defined by

p p + a[y(T+ t ) + 4T( I  lu 1h i
2 
+ h

~
(T))J (3.51)

-
~~~~~~~~~~~~~~~~~~~~- - -- - S - - •
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Choosing

* * 2(hI u~ I l 2 +~~)
A — A (y; t ) = 2 

(3.52)

0
we have

2 * 2FF” — F’ � — A (y;t )F + ciFF’, 0 � t < T (3.53)

If we apply Jensen’s inequality to (3.53) we obtain

- 

ci 2 ~.—T i~ó~
k

F(t;y,t )  � e [yt ] [F(T;y,t)e ] , 0 ~ t < T (3.54)

where

6*(t) = (ecit — e
ciT)/(l_eciT), 0 � t < T (3.55)

Taking y = -4 in (3.54), extracting th~ limit as to 
-

~~ -I-~ , and then choosing

2 2
> 0 so large that w N + 1 � Qe

ci we obtain the estimate

I hu(t) 11
2 

� Q~~~~ ~~e
ci 

, 0 � t ‘ T (3.56)

To close out our study of the case u = 0, a > 0 we now integrate the

differential inequality (3.53) according t~ the “tangent property” of convex

functions and we obtain

F( t ;y , t )  > yt
2 
exP[[

0 
0}(l_e

cit) + 4~— tJ (3.57)

I
which, with y — lit2, A~ — A*(1/t

2
;t ),  reduces to

h I u ( t ) 1 1 2 + (
~~~

+ 1) 2 � exp t{~~~
_ 
~~~}.(l_ e

cit) +~~~ t~ (3.58)

were we to follow the arguments previously employed we would , at this point ,

_ _  

j~~~~~~~~~~ Ji Iii~~
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take the limit in (3.58) as t
o 

-* ~~~ This procedure , however , does not

lead to a viable lower bound for I l u l 1
2 in this case. It is worthwhile,

however, to examine the function

* *A (y;t ~ 2 
A (y ; t )

J(t;y ,t )  E ( 
2 
° — ~~__).(l_e

ci 
) + ° ~ (3.59)

Cl early , J(O;y , t) = 0 for arbitrary nonnegative constants y, t
o
. Also

* *
2 A (y;t ~ A (y;t )

J’(t;y,t )  = 
~~~~~~~~~~~ 

~~ 

~~ )eci + (3.60)

*from which, by the defintion of A , it follows that

2
ciyt

~ ~
°) J’(t;y,t~ ) = (k

1 
+ k

2
y)(l_eci )+ciyt (3.61)

where

k
1 

= I 1u 11 1
2(1 + 4aT) + ~ + 4ciTha(T) (3.62a)

k
2 

= 1 + aT (3.62b)

Thus, if we choose

(k
1
+k
2
y) 

T
t
o 

= t
0~~ 

E (eci — 1), y > 0 (3.63)

then J’(t;i~t~~~) ~ O f or all t, 0 � t � T, and each real y > 0, and we

can state the following result:

Theorem 111.3 Let u € N be any solution of (2.17), (2.18) with u = 9
and a > 0 and assume that M(0) satisfies (3.2a), (3.2b). Then for any

T > 0 there exists Q > 0 such that I IU I 
2 satisfies (3.56) and, for  each

2
real y > 0, I hu h I also satisfies

-5
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tl u( t )I1 2 + y(t+t )
2 

� yt
2 exptJ(t;y,t ) J ,  0 ~ t < T (3.64)0,1 0,~ 0,1

where t is defined by (3.61a), (3.62b), and (3.63) and J(t;y,t ),

• 0,1 0,~~

defined by (3.59) with to 
= t

01~ 
is nonnegative and strictly monotonically

Increasing on [0,T).

The results obtained in cases I and II did not involve any hypotheses

concerning the sign of the initial energy E(0); as we assumed u = 0 in

both cases, E(0) ½ II u 1 l I 2 > 0 if u1 ~ 0. In the cases considered below

we remove the restriction that u = 0.
—o -

Case III: U # 0, a < 0, and ~(t) 0, 0 � t < T.

In this case (provided we use the fact that a < 0 to delete the term

H( t;y, t)) inequality (3.3) reduces to

FF” — F’2 � — 2F(I ki1 I 1 2 — + p) — Ia 1FF ’ (3.65)

with p given by (3.17). We now assume that the initial data u0
, 
~~ 

satisfies

hI u~I h
2 

— <u0,Lu0
>< — (3.66)

where p — wN2T sup I IM(t)II L H H Taking y = 0 in (3.65) we obtain
[0,T) - 

+
,

(F( t) = IIu(t)H
2
)

F( t)F”(t) — [F’(t)]
2 � — IcxIF(t)F’(t), 0 � t < T, (3.67)

Jensen ’s inequality then yields the upper bound

I hu (t)I ~2 ~ I Iu~ I 1 26 I Iu (T) I t
2( 1 6)

, 0 � t < T (3.68a)

We note that the hypothesis that u c N, and (3.68), Imply that there exists

.-~~~--- —~~~-~~---~~~ — ~~~~ — - 
—-- -5 

~-~~--~~~~~~-- ~~~~~~~~~~~~~~~ ~~~~~~ ~~~~
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R > O s u c h that

Ilu(t )11
2 

� R
1
~~ I hu h I 2

~, 0 � t < T  (3.68b)

However , as (3.66) can not be valid for H u l l  sufficiently small, (3.68b)

represents only an upper bound on IIu(t) II in terms of H u H  and not a

stability estimate. A better result is fcund by integrating (3.67) according

to the “tangent property” of convex functions; in fact , directly from (3.32)

with A 0 and F( t ;y, t )  replaced by F(t) E hl u (t )I 1 2 we obtain

hl u (t)11 2 � I l u 11 2 exp 
2<
~l,~o

> 
(l_e~~~~

t
)J , 0 ~ t < T (3.69)

- —o Ic t III u0l I

From the estimate (3.69) it is obvious that if either <
~o~~l

> = 0 or

~l 
= 0 (and <u ,Lu > > 

~) then lh u( t )I 1
2 
� II u ~ h l 2 for all t € [0,T). On

the other hand, if <u1,
u >  > 0, then on [0,T), hl u(t) I1 2 is bounded below

by a monotonically increasing exponential function of t. Finally if

< 0 then IIu( t )11 2 can not decay any faster than a monotonically

decreasing exponential function of t. Our results are summarized as

Theorem 111.4 Let u € N be any solution of (2.17), (2.18) with u ~ 0,

ci < 0, and ~(t) 0 on [O ,T). Assume that M(0) satisfies (3.2a) and (3.2b).

Then

(A) If the initial data satisfy (3.66), Ilu(t) hl is bounded above

by lI u 0 l h  according to (3.68b), 0 � t < T

(B) If the initial data satisfy (3.66) then there exists K(cx) such

that for all t, 0 � t  T,

hI u( t )I1 2 � II u o l I 2 exp[K(cz)(l_e~~~~
t)J, (3.70)

— S——~~~~~~-~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~ —•— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ •~ -—~~ — -~~~~ -~~~~~~~— —~~~~~~~
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where for each real a, K(a) is real—valued and

(I) K(a) = 0 if either — 0 or <
~o’~ l

> — 0

(ii) K(ct) > 0 if <
~±o’~ l

> > 0

(iii) K(ci) < 0 if <
~o

’
~ 1

> < 0

and

(iv) IK(a)I -
~~ 0 as h al  -

~

Remark The case u ~ 0, a > 0, and 8(t) E 0 can be treated In the same

manner as Case III; in fac t, from (3.50) (which was derived under the

assumption that u = 0 with a > 0) we can write down Immediately the

differential inequality

FF” — F’ 2 � — 2F(I Iu1I 1
2 

— <u ,Lu> + p) + aFF’ (3.71)

for the case where u # 0, ci > 0, but ~(t) E 0; in (3.71) p is defined by

(3.51). Suppose we set y — 0; then if the initial data satisfy

(1 + 4 ci T ) I I u1II 2 
— <u ,Lu> � - (~~ + 4aTh (T) )

the above differential inequality reduces to

F(t)F”(t) — [F’(t)]
2 

� aF(t)F’(t), 0 � t < T, (3.72)

where F(t) .“hl u(t) 1h 2. We leave the integration of (3.72) and the analysis

of the resulting estimates on hI u( t )11 2 to the reader and turn, instead ,

to consider a case where both # 0 and 8(t) ~ 0.

Case IV u # 0, 8 ( t)~~~0, c i < O a n d $ (O)>0

In this case (3.3) is easily seen to imply that

L . - - —
~~~~~~~~



- - --. —•

— 
•
~ f l_

FF” — F’
2 � - 2F(2E(0) + p) - IaIFF ’ (3 .73)

+ 2F(2f~ ~(r)<u ,u >dt — 8(t)<u,u0
>)+4F8(0)hIu i i

2

= — 2F(2E(0) — 28(O)IIu~ II 2 + p) — Ia I FF ’

+ 2F(2f~ ~(r)<u ,u >dT — 8(t)<u,u> )

In order to proceed further we must bound from below the third expression

on the right—hand side of the differential inequality 
~~~~~~~ 

this is

acc omplished by the following lemma:

Lemma Suppose that ~(t) is bounded on [O ,T) for each fixed T , 0 < T < ~~~.

Then there exists a constant C > 0 such that

2f ~ ~~~~~~~~~ h1
0
>4~T — B (t)<ti,~i0> � — ci h u h  I ,  0 � t < T (3.74)

Proof We set p — sup l~ (t)I < ~~~. Then
[O ,T)

~(t)<u(t), u >dt~ - ~(T)u(T)dT , u > ~ (3.75)

� (f ~ 1~ (r )IIIu(t )IIdT )hIu 0II

� p(f~ I I u(T)IIdT)I1u0h l  � p~NThl u0 i h

J ~ ~(t)<u ,u >dT � - p wNThI u hI , 0 � t < T  (3.76)

Also

18(t)cu ,u0>I � 18(t) l ku ,u > I  � wNI$ (t )l•11u011

~ f~ ~(i)di + B(0)I Hu H � w~ (pT + B (O))IIu~ h i

_____ 
~~~ ~~~ i~i :~ 

~~~~~~~~~~~~~~ ________________



S 5 

-30-

so

- 8(t)<u,u > � - 
~N(pT + 8(O))I l u l l ,  0 � t < T (3.78)

Combining (3.76) and (3.78) we obtain (3.74) with

C = wN(3pT + 8(0)) > 0 (3.79)

We now return to 
~~~~~~~ 

in view of the last lemma this latter inequality

implies that -

FF” — F’
2 � - 2F(I 1u 1I 1

2 
+ ~( )  + p) — IaIFF ’ (3.80)

where I :  11
+ 

4- is def ined by

~(w) = 2B(0)I 1whI (
28~o) 

— lI w li ) — <w ,Lw> , w € (3.81)

- - If we set y = 0 then (3.80) reduces to

F(t)F”(t) - [F’(t)]
2 � - 2F(t)(h1u

1 11 2 + + - I a I F ( t )  (3.82)

with F(t) — H u ( t ) I l  and p — WN sup I J M ( t ) I I L(H H )- [o ,T) +‘ —

and we have the following result:

Theorem 111.5 Let u e N be any solution of (2.17), (2.18) where ~ 0,

8(t)  ~ 0, ci < 0, and 8(0) > 0. Assume that M(O) satisfies (3.2a), (3.2b)

and that ~(t) is bounded for 0 � t 
< T. Then if the initial data satisfy

I lu~ I 12 + — ji , (3.83)

where ~ is defined by (3.81), IIu( t )h l satisfies the estimates (3.68)

S 

and (3.69). In particular, if u1 
— 0 and ~(u0) � 

— 
~~ then

— ——5-- ~---~~~ —‘~ — ~~~~~~—---- ~~~— ~~5 —~~ -~~~ ~
—-5-.-.- ~~~~~~~~~~~~~~~~ £~~ ~~~~~~~~~~~~ A
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hIu (t) 11 2 � 11 u 011 2 fcr all t, 0 ~ t < T.

Remark We leave for the reader the consideration of the other cases

possible when u # 0 and 8(t) 1 0, e.g., ci < 0 and 8(0) � 0; the stability and

growth estimates which apply in these situations may easily be derived by

suitably modifying the last lemma and making use of the basic differential

inequalities derived for the previous cases.

4. Applications to Bounds for Electric Displacement Fields

In order to apply the results of the previous section to solutions of

the initial—boundary value problem (2.1), (2.lOa), (2.lob) (associated with

the constitutive relations (l.16a), (l.l6b)) we must delineate the form

assumed by the basic hypothesis (3.2a), (3.2b). In other words, for the

operator M(t), which is defined by (2.14b), we wish to examine the implications

of the requirement that

— <v,14(O)v>
L 

� K lh v IJ 2
1, v € H’(c2) (4.1)

—

0

• with K � c~T sup IIM t II L(Hl H 1
Y 

From (2.14b) and (2.11) we easily
[O,T) — o’

compute

— — J~ (M(0)v)
1
v
1
dx = — b

~
Y(0)f

~
6
ij
v
i
v
j

dx

2

+ ~~ ~( 0) f ç~ 6ik~j-e ~~ 
v1
d~

0

b a
2
v

— — b
0 ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ 

v
1
d~

1 1for any v € H . But if v c H then
- 0 - 0

__________________ ———--‘.5----— 
_______
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-

2 2

I~~1k6~~ 
v
1
dx= f~6~ Vk dx (4.3)

av ~v
B -  

~~~~~~~~~~~~~~~~~~~ 
~~~H

1

where we have used integration by parts together with the fact that v

vanishes on ~~~~~~~~~~~~~
. Thus

- <v,M(0)v> - - b~~ (0) I lv i i~ - 
~

(O) I lv i 1~ (4.4)

— b ( ~
2
I’V(O)I +~

i
~~ (O))IIvhl ~

Therefore, (4.la) will be satisfied if

— b0(W I~F(0)I + J~~(°)) � K (4.5)

with Ic � ~T sup h I M h I s, H ’  For the sake of convenience we now set
[0,T) ~~ —

,

T(t) — ‘V(t). From (2.l4b) again we have,

so 
~~~~~ 

- b
0
[~ (t)~1~

v~ - 6ik6jL 
v c (4.6)

— hf~
[M
t
v]jvjdxI (4.7)

b a
2v

— (b
0
’!’(t) I I~ I I~ — 

~~ ~
(t)f

~
s
j1
v
k aX

j
ax

e 
d~ h

— b h ’~(t) I l~ l h~ + -~~
— 

~(t) I lv i

� b0 (w 2 lT(t ) I + -~--l~~( t ) I ) h l v I I ~

(3) This follows from the definition of H~ and a standard trace theorem.

~~~~~~~ 

_ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _
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It now follows that for each t, 0 � t < T,

I<v ,Mv> l 2 • 1
!~t

H L(H ,H ) — SUP � b~,(w IT(t)I +— I~ (t)I) (4.8)
+ — v€H+ I I V I I U

Thus, (4.lb) will be satisfied if

K � ~Th (w2 sup IT(t)I +- ~~
- sup l~ (t)l) (4.9)

° [0,T) a0 [o ,T)

Combining (4.5) and (4.9) we find that a condition which insures the validity

of (4.1) is

— (w2iT(0)I + -~~
- •(0)) � wT(w

2 sup J’!~(t) l + sup I~ (t)I) (4.10)
a
0 [0,T) a

0 [O ,T)

It is clear, from (4.10), that this inequality can be satisfied only if

4(0) < 0 with i~~(0)I > aw 2lT(O)l. It is worthwhile, at this point, to

recall the following result which has been proven in [6]:

Le~~a Let •(t) € C
1[0,t) and assume that the series defining ~~t) as well

as the derived series, which is obtained by term by term differentiation,

are uniformly convergent on every interval [0,T—c], 0 < £ ~ T. If

sup l~ (t)l < a /T then
[O ,T) °

(I) sup l~~(t) l � F(T) (4.11)
[0,T)

( sup I~ (t)I)

(ii) sup l’kt)I ~ F (T) 
fi + T [0,T) (4.12)

( [0,T)

where

F(T) — sup I~ (t)h/(a — T sup I~ ( t ) l )  (4.13)
{0,T) ° [0,T)

•

~

S

~

-5

~

55

~ 

_~~~~~~~~~~~~~~~~~~ _~~ - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ -- ~~~~~~~~~



-~ ~~- -~~~~~~-

—_-—---- 
5 — -

,

T

Remark Similar results hold for sup l’V (t)I and sup I4~(t)i, of course,[o,T) [0,T)
under analogous assumptions on *(t) and the series defining ‘I’(t), e.g.,

we require that sup l~P(t)I < b IT; the constant F(T) appearing in (4.11),
[O,T) 0

(4.12) would, in this case, be replaced by

G(T) — sup hi (t)h/(b — T sup h P ( t ) l )  (4.14)
[O ,T) ° [o,T)

In recalling the above lemma we have been motivated by a desire to

replace the sufficient condition represented by (4.10) by a condition

which involves only the basic memory functions flt), ~p(t) specified in the

constitutive relations (l.16a), (l.l6b). To this end we note that the

equations defining 4(t) in terms of c~(t) and ‘~‘(t) in terms of ~~t) imply,

respectively, that

‘Z(t) + -i-- 4(t) = — -i-- 
f~ 

4~(t— T)~ (T)d T (4.15a)

q’(t) + 
~~~~~~ ~p(t) = — 

~~~~

- f~ ~
(t—t)’V(t)dt (4.15b)

From (4.15a) and (4.15b) we immediately obtain

= — -L 
~
(0)

~ ‘V(
0) = — 

~
j
~
- iP(0) (4.16)

and thus (4.10) can only be satisfied if ~~0) > 0. Directly from (4.15b)

we now compute that

+ j - ~(t) — — 
~~~~- iP(o)’V(t) — j

~
- I~~t

(t_T)
~
(T)dT (4.lla)

1 • 1 ’
‘Y(t) + ~~~

.— 
~p(t) = — 

~~~
— 

~p(o)W(t) — 
~~~

— 

~p(o)’f’(t) (4.l7b)

— 

~i0
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Therefore,

‘1’(O) E T(O) — — (ip(0) + i~(0)’~(0) + ~(0)’V(0)) (4.18)

However , from (4.16) and (4.l7a),

~(0) = - 
~~~~

- 

~
(O) - ~~~

— 
~~0)~~(0) = - j~

- ~ (0) + -L ~b
2
(0) (4.19)

Combining (4.16
2
) and (4.19

2
) with (4.18) we have, f inally ,

T(O) — ~j - 
~
-5 ~~~~ — 

~~~~
— 

~P(
0)
~~

(0) + ~P(0)) (4.20)

The left—hand side of (4.10) now assumes the form

2 1 3  2
—

~~~ ~(0) 
— 

~~~
— 

I 
—

~~~ ~p (0) 
— 

~~~
— 

~~0)i (0) + ~
p(0) I (4.21)

a o b o
0 0

We now turn our attention to the right—hand side of (4.10). Directly from

(4.17b) we obtain

— — 
~~~~
- (~p~

3
~(t) + ~p(o) T(t ) + ~(0)4~(t) (4.22)

+ ~p(O)V (t) + f~ ~~~~~~~~~~~~~~~~~~~~~

Also,

sup IT(t)I � jj-[ sur hP(t)I + I’P(O)l sui h~(t)I (4.23)
[0,T) o [0,T) [0,T)

+ (hiI’(O)I + T sup hp(t)l) sup I ’i’(t)l3
EO ,T) [0,T)

while, by (4.22),

_ _  - - - - - -  _ 1 J
________ 5- --~~~~~— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~
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sup I!’(t)I � ~ —[ sup hp~
3
~(t)I + ~p(o) sup IT(t)l (4.24)

• [O ,T) o [0,T) [0,T)

+ ~i(0) sup l’~(t)I + (IiP(O)I + T sup I*~
3
~(t)I) sup I’Y (t)I]

[O,T) [O ,T) [0,T)

If we substitute for sup IT(t) I in (4.24) from (4.23) we obtain an estimate
• [O,T)

• of the form

sup I~(t) I �A sup J ’i’(t) I + 5 sup I~ (t) I + C (4.25)
• [O,T) [0,T) [O ,T)

where , the constants A ,B, C are given by

A = ET sup l~~
3
~(t)I + I~ (O)i + I~~(0)l ( 1~ (0) l + T sup I~~

2
~ ( t ) I ) ]

0 L0 ,T) o [O ,T)

8-~~-[I~(0)I ~~~°)

C —~~--[ sup hp~
3
~(t)I +~~ — I~p(0) l sup hp~

2
~(t)I]

o [O,T) o [0,T)

As a result of the estimate (4.25), the right—hand side of the inequality

(4.10) is bounded above by the expression

w3T(A sup I ’i’(t) I + ~ sup 14’(t) I + C) + sup h~ (t) I~ 
(4.26)

[0,T) [0,T) o [O ,T)

which , in view of the preceding lenuna, is Itself bounded above by

sup IiP(t)h
v ~

3T[AG (T) + 
BG(T)(1 + T 

[O ,T) ) + C] (4.27)
T sup l~P(t)I

[0,T)

sup 13(t)h

+ 
wF (T) (1 + T 

[0 ,T)
a sup I4 (t)i

[O ,T)

_________ _______ 

I .
.-
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a b
provided sup k(t)l < -~~ and sup hP(t)I < -j

~-[0,T) E0,T)

From (4.27), the definitions of the constants A , B, C , (4.13), and (4.14),

it is clear that

V = V(w,T, a ,b , I~~~~(o ) i ,  sup I~~~~( t ) I ,  sup l~~
(k)

(t)h) (4.28)
0 ~ [0,T) [0,T)

with i = 0,1,2, j = 0,1, and k = 0,1,2,3. Thus, V is computable once

~~~~, T > 0, and the constitutive relations (l.16a), (l.l6b) are specified .

Thus (4.1) will be satisfied provided

-5 ~(0) - ~~~— I -5 ~
3(~) - ~~ ~p(o)~ (o) + ~i(0) I � V (4.29)

We offer below an example of the kind of considerations which are

involved in verifying that (4.29) is satisfied .

Example In the constitutive equations (l.16a), (l.16b) we take

c~(t) — e~~
t , 1~ (t) a e

t (4.30)

where K > 0 is arbitrary; for the sake of convenience we set T = 1. The

region ç2 c (and hence the embedding constant w) are left arbitrary at

this point as are :he constants a , b .  From (4.30) we have

— sup 14(t)h — 1, sup It3(t)I = K (4.31)
[0,1) [0,1)

and

sup ~
(k)

(t~~T — 1, k = 0,1,2,3 (4.32a)
[0,1)

= ~p(O) — 1, i~(O) — —1 (4.32b)

(  

_ _ _ _  _
- -- ——_---—5-5---~~—--- — 5- —

~~~
-- .
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Therefore , the constants A , B , C in (4.25) are given by

A a (1 + ~ ), B = C = (1 + ~~ ) (4.33)

Also, if a > 1, b > 1, then from (4.13) and (4.14)

~5i

F(l) = a~-1 G(l) a (4.34)
o o

Combining our results it follows that (4.29) will be satisfied if a , b ,

and ~ are chosen so as to satisfy

(b- I-i) b+3 2

2 
— 

a(a —1) > W b
:
_l + 

!~~— (-4 + ~~~~
- + 1) (4.35)

0 0 0

As b must be restricted to satisfy b > 1, the right—hand side of (4.35),

- - 
which we denote as ci(b ,w ),  Is clearly positive. Thus, in order for (4.35)

to be satified for an arbitrary a > 1, ~ must satisfy

w = w ~~< -~ j(l— -~-) <-j~j~ 
(4.36)

If we now choose ~2 so that (4.36) is satisfied and define

- ~~ ~~~l+K)• a(a , Q = 

2 — a(a —l)

then (4.35) becomes

a(a , w,~)>c~(b , w.~) (4.37)

• But

u r n  a(b , w) = 0 (for any w > 0) (4.38)
b -~4~0

and thus it is clear that for an arbitrary a > 1 and w — defined by

- ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ .~~~~~~
_ - • - —~~~~~~~~~~ :~~~~~

_ __
~~

_ _ •__ 
~~~~ 

•-5~~~~ • ~~ •- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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(4.36), the inequalIty (4.35) will be satisfied if b is chosen sufficiently

large. We summarize our results in the following lemma:

Lemma Consider the holohedral isotropic dielectric material which is defined

by the constitutive relations

D(x,t) = a E(x,t) + f~ 
e~~~

tT )E (x ,T)dT (4.39a)

H(x,t) = b B(x,t) + f~ 
e~~

t_T)B(x ,T)dT (4.39b)

where K > 0 and a > 1 are arbitrary and (x,t) c x [0,1) with ç~ c chosen

so that the bedding constant w, defined by the inclusion map of H1 into L2,

satisfies (4.36). If D(x,t) = O,(x,t) € 3~ x [0,1), then there exists a

constant r > 1 such that the operator M( t) ,  defined by (2.l4b), satisfies

the basic hypotheses (4.1) whenever b � r.

5. Relation to Previous Estimates for Holohedral Isotropic Dielectrics

In the present paper we have considered a special case of nonconducting

holohedral isotropic dielectric response under the assumption of zero past

history , i.e., E(t)=0, B(’t) O, — t < 0; our constitutive relations were,

therefore, of the form (l.l6a), (l.l6b); using a logarithmic convexity

argument we then derived growth estimates for the time evolution of the com-

ponents of the electric displacement field in a dielectric which conforms to

these constitutive hypotheses. In a recent work [11] we have derived different

estimates for a closely related problem . Namely , we consider in [lii a

holohedral isotropic material dielectric of the type (l.l5a), (1.l5b) with

a 0 , b 0 , v>l but with past history of the form

- 

~~~~~~~~ ~~~
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, 
_ o o _ < t < _  t

E(x ,t) = h
— 

E5-~(x~t)~ — t
h

�t •< 0

(5.1)
( o  ,

B(x ,t) = )  -

- - 
~~~~~~~~ 

— th
�t< 0

where th
)O is a given positive constant and 

~h’ ~h 
satisfy appropriate smooth-

ness assumptions on ~ x (_th,O). The constitutive hypotheses in [ii] then take

the form

D(x ,t) = a0 E(x,t) + f
t
t4(

t_
~r)E(x,T)dT

(5.2) — — 
ft

h —

H(x,t) = b0 B(x,t) + 
J

tlp(
t_T)B(x,T)dT

• - -  h

on ~2 x (_th, T) ,  and, in place of the evolution equations (2.1) considered in

the present work, we obtain, under the additional assumption that Dh
(x,_th) = 9’

uniformly on ~, the evolution equations

at2 
+ ~‘(O)—j~- + ‘P(0)[D~ — c

0 6ik6j1 3x ,~ x1
1

b a
2D (T)

+ j
~~ 
(
~
(t_T)D

i
(T) — ‘ ‘

~~~ ~
(t_T)óIk tS

jl 3x ~x ~ 
dT=0

h o j i

for I = 1,2,3 with cEb /a~~(0). The same Hilbert space formalism used in

the present work then leads in [11] to consideration of abstract initial—

history value problems of the form (2.17),(2.l8) but with 8(t)E0 and with

the integral operator defined on [_th~
T) instead of [0,T). The basic differences,

however , between [11] and the present work are as follows: In [11] we con—

sider initial—history value problems corresponding to varying initial displace—

ment fields and varying past histories, i.e.,
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+ ru~ — N u~ + f~~ 
~(t_T)u

ci(T)dT1.,~, 0 � t
h
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(5.4 ci(o) ci 
~~,‘ 

u~ (0) v 
~u ,v € H ~)

uci(r) = 13(T), th
� T <  0

and 
-

~~~~~ 
+ ru~ — N + f -~ ~(t_T)~~ (T)dT=Q , 0 � t <T

(5.5) 1u
8(0)_u , u~(0)~~ (~ >0)

~ ~r).g(8)~ (t)~
_t
~< < 0

where g is monotonically increasing on [0,~). The basic aim of the work

in Ill] is not to derive growth estimates for the time evolution of ju(t) H

but rather to derive lower bounds for sup f ju°j 14. ( sup 1u 81 I~) in terms(_th,T) (_ th,T)

of cz(8) and the data of the problem: the conditions (3.2a),(3.2b) in the

present work are weakened, in [11] to simply

(5.6) —<v,K(0)v >� 0, Vv c H4.

and the a priori condition that u € N (a class of bounded peturbations of the

kind prescribed in §1) is dropped in [11] as logarithmic convexity is not

employed to derive the desired estimates. Additional assumptions are made,

however , in [11] relative to the data and the integral operator ; namely ,

(i: I~ (T)II L (H R ) dT<
~~ f~ I~~(T)I I L(H~ ,H ) ~

T<
~~

f
~
th~~~~~~~

1+

(5.7) <u ,v >> 0 , <u ,Nu>>0 , and
~o~~o ~~~~~~

<
~~f~~ 

IC(—T)U(T)dT><0.
h
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For the initial—history value problem (5.4) we then have the following

result in [11]: Let uci be a strong solution to (5.4) with

I l u l l  < — <u ,v >

(5.8) 

T in 
;:~:~ > 

—
~~~

r t
\

2<u~ v >—r I i~~i 2)

Then for each ci > J ~v I I /<u ,Nu
7’~<u ,j0 K(_T)u(T)dT> r7

½

(5.9) 
r 
sup I lu

ci l 1÷ 
~ L 

h / ci

L_t
h
,T) w Z

T —

where

(5.10) 
~T 

= ½ IIN H L (H ,H ) + 1ll K( r ) II L(H ,H ) dT

+ T 1 1  I ! S,
(T)  I

A similar result follows for the problem (5.5), with varying past history,

under analogous assumptions. The basic idea behind the proof of the estimate

(5.9) is as follows: Assume that (5.9) is false for some parameter value

> II v jJ/<u ,Nu > ½ and show that F (t)=jIu
ci ( t ) 1J 2 

satisfies the differential

inequality

(5.11) F_F_”—(~+l)F~’�— I’? F ’, 0�t<T
ci a  cx cia

which, in turn, implies that

(5.12) F~(t) � F
a(O)[l — (l_e

_
~
’t)~FL(O)/rFjO)]~~

The bracketed expression in (5.12) vanishes at
75 2<u ,v >

(5. 13) t~~ -~ ln( ~‘o ~‘0 2
~. 2<u ,v >— ri lu I I-
~~ -•0~~0 ‘.-o /

___________ ________________
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and t ,<T by virtue of the hypothesis (5.8). Thus sup II u aII + ~
(_th,T) —

and via the embedding of H4. into H this implies that sup I Ju~ — + ~(_t
h)T)

contradicting the assumption that

— lI<u o
,fo

t 
K(_T)U(T)dT>

’
~}i

sup II u~l I ~ 
h j ~~~~~~

-

(_t
h,T) w 

J

and, thus, establishing (5.9). Estimates of the type (5.9) can be very

useful in terms of deriving estimates for physical parameters which enter

the definition of the integral operator; in this vein we refer to a recent

work [12] on Maxwell—Hopkinson dielectrics where estimates of the type (5.9)

have been shown to lead to bounds for constitutive parameters appearing in

the memory functions of such materials.

In a more recent work [l3 initial—history boundary value problems

associated with (5.3) have been reconsidered with a view toward deriving

asymptotic lower bounds on the norms of the electric displacement vector

when the operators in the equivalent initial—history value probler~ do not

satisfy the requisite coerciveness conditions that imply asymptotic stability

[14]. In fact, it is shown, in [l3J, that solutions u € of the present

abstract initial—history value problem (N*_{~~cC([_th
,co);H~)!

• sup I lv i ~l � N) for some N > 0) satisfy the differential inequality
0 

-

(5.14) 
~~
“— (2~~~) 

F~~ — ~FP’, F —I lu(t) I

for any 8 >  0, 0�t< cD , provided E(0)’.½IIv II ~ _<u
o
,
~~o

>
L 
< 0  with

IE(0)I> ~ w N2[II K I I L [o~~)+IIKL L ~0~~~~where we assume that (5.6) holds, and in

addition, that

—5-- ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~
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(K (t) E I I ~
(t) II L ( H~,R

_l) satisfies

(5.15)4

1 

K(t) f l l ~t JJ L5 (R~,H_ 1) dT satisfies

K ( .)  € L1[0 ,~ ) with K(0) = 0

The differential inequality (5.14) then yields the estimate
7 2< u ,v

2 2 f ~
0
~~
0
~~~2(5.16) lim !IU(t )II L ~ II~~II~ exp~~—

t~~ +~~ 2 2 
~~r JJ u J J ~

so that u r n  u r n  Ju(t)J I~ 
� I I~ , I I~ . In fac t, the sharper estimate

r-~-+~ t-~-+ c ~ 2 2

r 12(1—X)zu ,v > 
~~

(5.17) 1 J u l 1 2 � II u ~~ J’ ~
( 

~° ~° 
~2

L2 ‘~o L2 L r I l9~ ‘L / j
is shown to obtain in [14] for all t > 0 and any A , ½ < A < 1. Thus the L

2

norm of u is bounded from below as t-~+~ even as the damping becomes

arbitrarily large.

- 

- 
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d1electric~ cu~i be modeled by an abstract initi.iL—value problem of the f o r m

— — Lu + f ~ M(t—T)u(T)dT = 8(t)u , 0 � t < T

~ (O) = 
~~~‘ ~~~~ ~l~~o’~ l 

c }I~)

where L € L
~
(H+,H), M(t) c L2 ([O ,T) ;  Ls(H+~

H)) , B(t) c C1([O ,T ) ) ,  and a
is an arbitrary (non—zero) real number. By employing a logarithmic convexity

argument we derive growth estimates for solution of the above system which

lie in uniformly bounded classes of the form :
N = {u C

2 ([ O ,T); H) sup 
~J U I I H 

�N}
[O ,T) +

for some N > O ;  our results are derived under a variety of assumptions con—

cerning a, ~ (t), and the initial data (without making any definiteness assump—

dons on the operators L or M(t), O � t < T )  and are used to obtain growth

estimates for the electric displacement field D(x,t) in rigid dielectrics

which satisfy constitutive relations of the form

D(x ,t) = a E(x,t) + f ~ 4(t—’r)E(x,T)dT
H(x ,t) = b B(x,t) + f ~ ~(t—T)B(x,T)dT

where E, H, B are the usual electromagnetic field variables, (x,t) € x [O,T),
C R3 is a bounded region with smooth boundary ~

), a and b are positive

constants~ and ~, ~fr are non—negative monotonically decreasing functions of t. ~~-
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